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Abstract
Pathanalyticmethodsasdeveloped byJohannPfanzagl areusedto demonstrate

howestimatorsequences canbeimproved. Improvementis shownthroughthe projection
of the estimator sequence. The projection technique is demonstrated in the case of
parametricfamilies and the corresponding extension to a special semiparametricfamily
is given.
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1. Introduction

Estimation is of basic interest in statistics. The general approach is as follows. A phenomenon is
usually modeled bysomeprobability measure P withdistribution function F. It is characterized through
functionals of the probability measure P, e.g., the mean and the variance. P isgenerally unknown and so
are its functionals, hence the need for estimation.

In parametric theory, the probability measure is indexed by some parameter. In general, the form
of the distribution is assumed to be known. The only missing information is the parameter value to
completely describe the measure. Typical approaches to parametric estimation are maximum likelihood
estimation (MLE), Least Square Estimation (LSE), Method of Moments Estimation (MME) and M
estimation. In nonparametric theory, the form of the probability measure is completely unknown. This
makes it doubly hardto do estimation inthis setting. Specialized techniques suchasL-estimation andR
estimation, and the use of U-statistics are common in nonparametric procedures.

Recently, considerable interest in probability measures of mixed type has emerged. A probability
measure of mixed type, isonewherein the form of the measure ispartially knownthrough the knowledge
of an unknown indexing parameter but the distributional form is unknown. Oakes (1981) called such
probability measures as semi-parametric models. An example is as follows. In a linear model setting,
suppose the distributions of the error terms are identical but unknown. Then the density of Y, the
dependent variable, is given by n(y-x/D) where n is the unknown density of the errors, Xi is the set of
regressors and 0 is the regression coefficient. Here, the unknown density is indexed by the unknown
coefficient D.

Application of classical estimation procedures is difficult in the above setting. The usual approach
isto constructasymptotically linear estimators which achieves theboundon the aymptotic variance. The
key to the construction is the definition of the scores in the direction of the indexing parameter. If the
parameter contains a nuisance parameter, the scores are projected onto the space of the parameters of
interest to get the effective score.

In estimation, weusually haveanapriori information aboutthe valueofthe indexing parameter. This
translatesto estimation under a set of restrictions. In this context, we illustrate the use of projection in
improving preliminary estimators, especially in the semiparametric setting.
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Section 2 gives an introduction of tangent space and its role in estimation. Section 3 discusses
distance measures between probability measures. Section 4 touches on projections of probability
measures and section 5 contains the basic treatment for semiparametric models.

2. Tangent Spaces

Let 113 be a family ofmutually absolutely continuousp-measure ofsome measurable space (fl,F,P).

The problemofestimationboilsdown to estimating the unknownmeasurePe 113. Naturally, the candidate
estimators are the P-measures Q which are "sufficiently" close to P. Identification of these measures
requires knowledgeofthe local structure of 113 so as to assess the asymptoticperformance ofthe measure
Q.

The phrase "sufficiently close to" suggests distance and direction as criteria. It is convenient to
regard the estimators Q as taking the form of a path denoted by, say, P,. It is expected that for P, to be
reasonable, P,~P as t~O. In asyrnptotics, P, will be replacedby paths, likePn-1f2 or P

n
•
1
so as to indicate

that the estimator sequence is a function ofn.

van der Vaart (1988) calls such paths P, submodelsofP. Furthermore, he defined a differential
submodelP, as a map t~P, from [0,1] to 113 if there exists a measurable function g such that with t~O

. Hrl (P,X - pX) -tgpXfdu~ 0 (2.1)

Here P, and p are the u-densities of P, and P, respectively and Jl is some measure dominating (}J.

Disregarding the integral in (2.1) yields g as a pointwise limit taking the fonn

g(x) = 2p -)4 ;, P/~xLo

4

=;, log P,X (2.2)

•

g can be considered, therefore, as a score function leading to P. Thus, the term directional derivative
applies. »:

Pfanzagl(1982)gavea different definition ofdifferentiable paths. ApathP,e 113, t~O, isdifferentiable

at Pe 113 with derivative g if the P-density ofP, can be expressed as
l+t(g+r,)

where g eL](P) and Ir,I~O as t~O. The two definitions are in fact, equivalent if we assume that g is
dominated by a u-square integrable function, sayM. We present this in a form of a proposition.

Proposition: Let P, be a path in 113 such that P,~Pe 113 as t~O. LetP, and p be the u-densitiesof
P, and P, respectively. Suppose there exists a functiony which is dominated by some u-square
integrablefunction. ThenP, is differentiable if any of the following two conditions are satisfied.

. (i)Pfp = 1+ l(g + r,) where Ilr,Il~O as t~O

(ii)J[rl(PI~ - p~) - t gpltif ~ 0 as t~O



"

Proof:We show. that (i) implies (ii) and .then (ii) implies (i)
«i):::>(ii» Since p =p(l + l(g+r », we have byTaylor expansion and the Lebesgue dominated, I.

convergence theorem, .. ' . . . .
,

J[rl(p,X - pX)-tgpXfdu = J[rl{pX(l+ ~1(g+r,)+o(t2)-pX)~ ~gpx)r duo

•
•
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where

Note that r: and r,+~O as I~O.

Hence the result.v

+1(g +r,':' ) i, 12~ 1+l(g +r,+)
p

r,- =-21 E+t 2(.Kg- E)2

r,+ =21 E +12(}'ig+ E)2

(2.3)

(2.5)

(2,6)
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If cB is a large set of probability measureswe call the collectionofall scores the tangent space ofP
anddenote itby 7~P, cB). The elementsofT(P, cB) areusedasapproximationsto the densitiesofp-measures
in the neighborhood ofP, with an approximation error becomingincreasingly small as the measures near
P,

Assumptionsare madeon T(P;(}3) so that theestimatorsequencesforP willpossesscertainoptimality

properties. Assumptions like approximability, convexity, continuityand the requirementofT(P,cB) being
a cone are common. For more details see Pfanzagl (1982).

-. Asmuchaspossible, wewant the tangent spaceto be a linearspaceso that projectionscanbe defined.
In-some cases;we require the tangent space to be full. Full inthe sensethat T(P,(8) definesthe samespace. .
as

In such a case, estimator sequences obtained are necessarily asymptotically efficient. An example (see
Pfanzagl, 1982) of a situation where we can get a full tangent space is the family of all p-rneasures Q
equivalent to P with

•

•



•
45

(2.7)

•

•

sufficiently small.

Example 1 In parametric families {Pa:8 E H), HeRl:) ifp(i) (.,8): (·,8):= dfj;a) ful~1I for i=I, ...,k some
local Lipschitz condition then T(P/B) = span {1(i)(.,8), i=I, ...,k} where 1(i)(.,8):= e;:~ .

Example 2 In semiparametric models, the tangentspaceisgiven as follows. Let B ={P t: 8 E H , tE 11
withHeR (withoutlossofgenerality) and Tsomeset(endowed witha topology). For a ~xed 8, letTo(Pa)
denote the tangent space of {Pa.t : tE 11 at Pa.t ' Assuming regularity conditions on (jJ

T(Pa,t,P) = {ct\.,8, r) +h: C ER, hE To (Pa,t)}

In short T(Pa.t,(jJ) is madeup of direction derivatives orginating from two paths, namely, P&.,t~Pa.t

andPa.n ~ Pa.t .

3. Distance Functions for Probability Measures

Having defined the set of possible directions towards the unknown measure P, it is important that
we have a distance measure to assess how close our estimator sequence will be to the true measure P.
Defining a distance measure for (jJprovides a structure for our problem settingtypical ofmetric spa~es.

Hence, nice results from metric spaces can be borrowed to further characterize the estimation problem.

(3.1)

by

"
Let QI' Q2' P belongto (jJ. A useful measure ofdistance between measures Q.. Q2'near' P isgiven

t.(Q,.Q, ;P) ~ [J (q, ~;'l'f
If Q

2
=P we get Pearson's distance measure

~(Q;p)2 = JC% _1)2 pd ~

Thisdistance measure appears ina natural wayinconnection withlikelihood ratios. Aproblem arises
• when oneuses~(Q:P) asadistance measure for (jJsince it isneither symmetric nordoesitfullfill thetriangle

inequality. Thus, there is a need to find distance functions which are asymptotically equivalent to ~.

An example of a distance measure which approximates ~ asymptotically isthe Hellinger distance.
The Hellinger distance is defined as

•

It is related to the sup-distance
V(Q,P): =sup(IQ(A)-P(A)I: A EF)

through the inequality

tH (Q, p )2 s V(Q,P) :stH(Q,P)(l-kH(Q,P»t

(3.2)

(3.3)

(3.4)\
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•
In connection with efficient estimation in semiparametric models, Begun,Hall, Huang and Wellner

(1983) showed the importance of the root densityf'2(.,8,g) being Heninger differentiable. Theydefined
Hellinger-differentiability asfollows. f'2(.,8,g) issaid to beHellinger-differentiableat (8,g) ERxGifthere
exists a function 'a E L2(~) anda bounded linear operator A :L2( v)~L2(~) suchthat, with.!" = (.;8",g),

Ilf/i - f'h -{'a(8" -8)+A(g,,'h _g'h}II~ (3.5)
.::...-------,.,...-----;;------"-~ 0 as n ~ co

18" -81+llg,,'h _g'hll
for all sequence 8 ~8 andg"I/2 ~ s" inL

2
(v), whereg, E G for all n~l, ~ and v are Lebesguemeasure

in Ric; the expression in (3.5) is the differential at (8,g). .

Example 3 For sequence of p-measures P".112 with P-density 1 + n·l12g + 11,112,,, with •

then
E/',,2) =o(nO

)

H(P"_}i; P") =S(1-exp[-Ys Ep (l)]) + o(nO
) (P") (3.6)

wherePn denotes a measure on the product spacen"andE 0 the expectation with respect to P. Here
p

H is a function ofg E T(P, cB). Thus, we see here explicitly the role of the tangent space in defining the
desirability of using paths of the form P".112 in estimating the P-measureP.

4. Projections of Probability Measures

Estimation in our context will be dealt with in this way: some estimators for functionals of the
probability measures will be obtained byfinding first an estimator for the probability measure, sayP,,(x). •
Estimators for the functionals will then make use of P,,(x) as the probability measure.

Ourinterest inprojections isbasedonthefollowing. SupposewearegivenobservationsXI' ..X
n
from

X" andwe are given an estimator sequence P,,(x)EcB. If it is known that P belongs to somesubfamily

cB c (}3, it is then possible to obtain an estimator sequence P".(X)E (}3 basedon P,,(x). A way into this
is throughprojection ofP,,(x) into cB. Denote this projection byP,,(x). In thisway,we areableto obtain
estimators which are strictly in. However, we expect that, under appropriate regularity conditions, the
projection P,,(x) improves P,,(x).

We define a projection of a measure Q in this manner. Q E(jJ is a projection of Q into (}3 if ql
q-l is orthogonal to T(Q ,(jJ), i.e., •

or equivalently,

EQ«f-l)g) =0 for all g ET(Q ,B)

E Q (g) = 0 for all g.ET(Q , B)

(4.1)

Hereq andq denotethedensities ofQ andQ ' respectively. It canbeshown, underappropriate regularity
conditions, that for any8 which approximates l\ , (see Pfanzagl, 1982)

8(Q,Q) =8(Q, P)+ o(8(Q,Q» (4.2)
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In short, QE (}j minimizes B(Q,P) for anyPE (}j .

Let 1+k
Q

and 1+kij be theP-densitiesofQ and Q, respectively. Then,underappropriateregularity
conditions,

(4.3)I/kQ- kQII=f(kQ-kQYpd~

=o(6(Q~ p)2)

wherek
Q

is the projection ofkg into T(P,(}j). Thisasserts that the projection of the density ofQ isclose

• to the density of the projected measure Q into (}j, i.e., one may use kQ instead of kQi.

Sincelocally (}j behaves likea Hilbert space,we expectthat the iterated projection resultsinHilbert
space theory apply to (}j; i.e., let (}joc (}jl' and let Q be ap-measure not necessarily belonging to (}j,. Let
Q

i
denote the projection ofQ into (}ji' i=O, 1~ then the projection Q,.o ofQ1 into (}joagreesclosely withQo'

Symbolically,
6(QI.o; C20) +o(6(QI.o;C20» =6(Q;Qo)o(6(QI; C20)0) + 6(QI; Qo)O(6(QI; Qo)o) (4.4)

Example 4 In parametric families (}j= {Pe:8 E H}, H cRK, the projection ofQ (not in B) into ijjcCB,

say Pe,is determined by

(4.5)

• Under suitable regularity condition, ft is determined by

.~ - 8 =c(8, Q) + o(6(Q; ~)2) (4.6)

(4.7)

where
c(8,Q):=[f f<')/Ot pd ~rEQ [ / (' )()!)]

=A(8)EQ[/O(.,~)]

It follows that Peminimizes 8(Q,P) forP, E CB up to a term of order o(8(Q, P
t
». Here8 isanydistance

function approximating 6 . It can be verified that the distance is minimized at t given by

. t =8 + A(8)Ee [kQ /0 (.,8)] (4.8)•
Thisisthe improvement procedureform. Suitable estimators for t canbearrived at bysubstituting"nice"
estimators for 8, A(8) and Ee[K

Q
lO)(., 8)]. .

. 5. A Projection Approach in Semiparametric Models Admitting a
Sufficient Statistic

We now consider the case where the u-density ofPI admits the representation

p(8) =h(-,8)g(\jI(-,8» (5.1 )

•
Here we saythat 'P(.,8) issufficient for thefamily {g E T} whereTis endowed withsometopology. From
the previous section the one-step improvement form is given by



•

(5.2)t =8 +A(8)Ep... [/(0) (-,8)]

t =8 +A(8)Ea[k p,, (.()/(0)(-,8)]

whereP,,(x)istheestimator sequence forPa' Underappropriate regularity conditions, theabovesequence
canbe reduced to

We now constructan appropriate estimator for t using P" and some estimator efor 8.

(5.3)

The factorization ofp(.J,8) given above yields

10(_ 8) = hO(-,8) + \jI(-,8)g<") (-)
, h(·,8) g(·,8)

=H(. 8) + S(. 8) g(') (-,8)
, , g(-,8)

wherea dot on top indicates derivative with respectto 8. Given a sample of sizen fromp(.,8), we split
the sample and use the first K observations in constructing an estimator for 8.

•

Under appropriate regularity conditions (see Kumon and Amari, 1984), we can arrive at consistent
estimators for 8 using the estimating equations

Using the rest of the sample, i.e. k+l, ...,n we can use nonparametric techniques to construct
consistent estimators forthefunctionals A(8)and E;,,(p(.) (.,8». Theconstruction ofestimators is done
by looking at the observations \I'K+I(.,8), ...,\1',,(.,8) where 8, later on, takes the valueof the solution to
anyoneoftheestimating equations given above. Thisprocedure will enable us to get consistent estimator
g (.) for g( (.,8), the density of the sufficient statistic. Thus, we have an estimator for the improved
" .estimator sequence Pt.

whereK<n.

j;

IH(Xp 8) =0
i=1

j;

IS(Xjl8) =0
i=1

(5.4)

•
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