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Abstract
Path analytic methods as developed by Johann Pfanzagl are used to demonstrate
how estimator sequences can beimproved. Improvementis shown through the projection
of the estimator sequence. The projection technique is demonstrated in the case of
parametric families and the corresponding extension to a special semiparametric family
is given.
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1. Introduction

Estimation is of basic interest in statistics. The general approach is as follows. A phenomenon is
usually modeled by some probability measure P with distribution function F. It is characterized through
functionals of the probability measure P, e.g., the mean and the variance. P is generally unknown and so
are its functionals, hence the need for estimation.

In parametric theory, the probability measure is indexed by some parameter. In general, the form
of the distribution is assumed to be known. The only missing information is the parameter value to
completely describe the measure. Typical approaches to parametric estimation are maximum likelihood
estimation (MLE), Least Square Estimation (LSE), Method of Moments Estimation (MME) and M-
estimation. In nonparametric theory, the form of the probability measure is completely unknown. This
makes it doubly hard to do estimation in this setting. Specialized techniques such as L-estimation and R-
estimation, and the use of U-statistics are common in nonparametric procedures.

Recently, considerable interest in probability measures of mixed type has emerged. A probability
measure of mixed type, is one wherein the form of the measure is partially known through the knowledge
of an unknown indexing parameter but the distributional form is unknown. Oakes (1981) called such
probability measures as semi-parametric models. An example is as follows. In a linear model setting,
suppose the distributions of the error terms are identical but unknown. Then the density of Y, the
dependent variable, is given by n(y-x’8) where n is the unknown density of the errors, x. is the set of
regressors and B is the regression coefficient. Here, the unknown density is indexed by the unknown
coefficient B.

Application of classical estimation procedures is difficult in the above setting. The usual approach
is to construct asymptotically linear estimators which achieves the bound on the aymptotic variance. The
key to the construction is the definition of the scores in the direction of the indexing parameter. If the
parameter contains a nuisance parameter, the scores are projected onto the space of the parameters of
interest to get the effective score.

In estimation, we usually have an apriori information about the value of the indexing parameter. This
translates to estimation under a set of restrictions. In this context, we illustrate the use of projection in
improving preliminary estimators, especially in the semiparametric setting.



Section 2 gives an introduction of tangent space and its role in estimation. Section 3 discusses
distance measures between probability measures. Section 4 touches on projections of probability
measures and section S contains the basic treatment for semiparametric models.

2. Tangenf Spaces

Let Bbe a family of mutually absolutely continuous p-measure of some measurable space (,F,P).

The problem of estimation boils down to estimating the unknown measure Pe B. Naturally, the candidate
estimators are the P-measures () which are “sufficiently” close to P. Identification of these measures

requires knowledge of the local structure of B so as to assess the asymptotic performance of the measure

0.

The phrase “sufficiently close to” suggests distance and direction as criteria. It is convenient to
regard the estimators () as taking the form of a path denoted by, say, P. It is expected that for P, to be
reasonable, P, — P as —0. In asymptotics, P will be replaced by paths, like P_, , or P so as to indicate
that the estimator sequence is a function of n.

van der Vaart (1988) calls such paths P submodels of P. Furthermore, he defined a differential
submodel P, as a map —P, from [0,1] to B if there exists a measurable function g such that with 1—0

Jlr(p* —p”)—%@y’rduﬂo @

Here p, and p are the p-densities of P and P, respectively and p is some measure dominating B
Disregarding the integral in (2.1) yields g as a pointwise limit taking the form

g(x)=2p% 4pfiy
= glog p,x Q2

g can be considered, therefore, as a score function leading to P. Thus, the term directional derivative
applies. d

Pfanzagl (1982) gave a different definition of differentiable paths. A path P € B, —0, is differentiable
at Pe B with derivative g if the P-density of P, can be expressed as

1+t(g+r,)

where g €L,(P) and |r|—>0 as 0. The two definitions are in fact, equivalent if we assume that g is
dominated by a p-square integrable function, say M. We present this in a form of a proposition.

Proposition: Let P, be a path in @ such that P —»PeBas —0. Let p and p be the p-densities of
P, and P, respectively. Suppose there exists a function y which is dominated by some p-square
integrable function. Then P is differentiable if any of the following two conditions are satisfied.

: (i)p%) =11 +1(g+1) where || ||—0 as -0
(‘i),f[t"(b,” - p%)- %gp”]2 — 0 as 10



Proof.:  We show.that (i) implies (ii) and then (i) implies (1)

(()=(u1)) Since p,=p(1+ t(g+r ), we have by Taylor expansnon and the Lebesgue dommated
convergence theorem, -

][ '(p% - p¥ du j[ 5(1+ %1(g+r)+o(t*)-p ).'%gp%)]’du“
L. , . . i . — ) [ % 2 . o )
o o j(Ap rrolp ) wco 23)
| " as {0 since i.r‘|'=‘o(t°), B - S a

((i))=>(1)) If g is dominated by some p-square integrable function we have, by the Lebesgue
dominated convergence theorem,

y'f z | . B | ‘

This implies that for sufficiently small f we have, for every € >0

(2" 1,

\p*) 2

o wge)s By T @)
. p :

where rm=-2te+t*(4g-¢€)
rt=2te+t*(Yg+e)

<et’ o SR ¢ X)

which implies

Note that r and r,"—>0 as 1—0.

Hence the result.v : o P : O S

If Bis a large set of probability measures we call the collection of all scores the tangent space of P

and denote it by 7(P,B). The elements of 7(P,B) are used as approximationsto the densities of p-measures

in the neighborhood of P, with an approximation error becoming increasingly small as the measures near
P. 4

Assumptions are made on T(P;B) so that the estimator sequences for P will possess certain optimality

properties. Assumptions like approximability, convexity, coritinuity and the requirement of 7(P, B) being'
a cone are common. For more details see Pfanzagl (1982).

. Asmuch aspossible, we want the tangent space to be alinear space so that projections can be defined.
Insome cases, we require the tangent space to be full. Fullin the sense that 7(P, ®) defines the same space

as
Lx(P)={geL(u): [gdn=0)

In such a case, estimator sequences obtained are necessarily asymptotically efficient. An example (see

Pfanzagl, 1982) of a situation where we can get a full tangent space is the family of all p-measures Q
equivalent to P with




a(Q: Py = [(%-1)" pdn @7)
sufficiently small. ‘

Example 1 In parametric families {P,:8 € H), HcRX) if p® (.,0): (-,8):= ﬂ;é',‘i) fulfill for i=1,...,k some

local Lipschitz condition then 7(P,B) = span {I1°(.,0), i=1,....k} where l")(.,9)1=%(“,%%1 .

Example 2 In semiparametric models, the tangent space is given as follows. Let B={P, : 8 e H ,1€T}
with HcR (without loss of generality) and Tsome set (endowed witha topology). Foratixed, let T(P, )

denote the tangent space of {P, : 1€T} at P, . Assuming regularity conditions on B

T(P,,1,P)={cl®C,0,1)+h ceR, heT, (P,,1)}

In short T(P, ,B) is made up of direction derivatives orginating from two paths, namely, P, =P,
and P, > P,

3. Distance Functions for Probability Measures

Having defined the set of possible directions towards the unknown measure P, it is important that
we have a distance measure to assess how close our estimator sequence will be to the true measure P.

Defining a distance measure for @ provides a structure for our problem setting typical of metric spages.
Hence, nice results from metric spaces can be borrowed to further characterize the estimation problem.

LetQ, Q;, Pbelongto B. A useful measure of distance between measures Q,, 0, ‘near’ P is given

? )2 %
A(Qan;P)=|:J(_‘1|_ng2_)_]

(3.1
If O, =P we get Pearson’s distance measure
2
AQ;PY = [(%-1) pdu

This distance measure appears in a natural way in connection with likelihood ratios. A problem arises

whenoneuses A(Q:P) asa distance measure for Bsinceit is neither symmetric nor doesit fullfill the triangle
inequality. Thus, there is a need to find distance functions which are asymptotically equivalent to A.

An example of a distance measure which approximates A asymptotically is the Hellinger distance.
The Hellinger distance is defined as

'\\ 2
H'(P,0) =2[(¢%-p*) du (3.2)
It is related to the sup-distance

V(Q,P): =sup(|Q(4)-P(A)|: 4 €F) (3.3)

through the inequality ,
LH(Q,P)} < V(Q,P)<LH(Q,P)(1- L H(Q, P))} 3.4\
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In connection with efficient estimation in semiparametric models, Begun, Hall, Huang and Wellner
(1983) showed the importance of the root density /*(.,0,g) being Hellinger differentiable. They defined
Hellinger-differentiability as follows. /*%(.,0,g) is said to be Hellinger-differentiable at (8,g) € Rx Gifthere
exists a function r, € L,(p) and a bounded linear operator 4 : L ,(v) - L,(u) such that, with f, =(;;6,.8),

e —{re(e, ~0)+A(g," - g%]
_51%

for all sequence 6 »8 and g "2 g"in L (v), where g, € G forall n21, p and v are Lebesgue measure
in R, the expressnon in (3. 5) is the differential at (G,g) «

(.5)

—a>0asn—o o

Example 3 For sequence of p-measures P

1, With P-density 1 +n'2g+n'?r, with

E(r}) = o(r")
then

H(P_,;P") = 8{1- exp[-%E, (8)]) +o(n")  (P) (3.6)

where P" denotes a measure on the product space Q" and Ep() the expectation with respect to P. Here

H is a function of g € T(P,B). Thus, we see here explicitly the role of the tangent space in defining the
desirability of using paths of the form P in estimating the P-measure P.

4. Projections of Probability Measures

Estimation in our context will be dealt with in this way: some estimators for functionals of the
probability measures will be obtained by finding first an estimator for the probability measure, say P (x).
Estimators for the functionals will then make use of P (x) as the probability measure.

Ourinterest in projectionsis based on the following. Suppose weare givenobservations X ,.. X_from
X" and we are given an estimator sequence P (x)e®. If it is known that P belongs to some subfarmly
@ C B, itis then possible to obtain an estimator sequence P (x)e@ based on P (x). A way into this

is through projection of P (x) into @ . Denote this projection by P (x). Inthis way, we are able to obtain

estimators which are strictly in. However, we expect that, under appropriate regularity conditions, the
projection P (x) improves P (x).

We define a projection of a measure Q in this manner. () €3 is a projection of Q into @ if g/
g-1is orthogonal to 7((D, @), i.e,,
E5;((3-1g)=0 forall g e T(Q,B) 4.1)

or equivalently,
E,(g)=0 forallgeT(Q,B)

Here gand @ denote the densities of Q and g , respectively. It can be shown, under appropriate regularity
conditions, that for any 3 which approximates A , (see Pfanzagl, 1982)

8(Q.0) =8(0.B) +0(5(0.0)) | 4.2)



In short, O €@ minimizes 8(Q,P) for any Peg.

Let 1+k, and 1+k; be the P-densities of Q and Q, respectively. Then, under appropriate regularity
conditions,

[fo - k| = [y ko) pan 4.3)

=0(A(Q; P)*)
where k , is the projection of ka into 7 (P,B). This asserts that the projection of the density of Q is close

to the density of the projected measure () into @, i.e., one may use k-Q instead of k5.

Since locally Bbehaves like a Hilbert space, we expect that the iterated projection results in Hilbert

space theory apply to B, i.e., let B c B, and let O be a p-measure not necessarily belonging to B,. Let

Q, denote the projection of Q into B, i=0,1; then the projection Q|  of O, into B, agrees closely with Q.
Symbolically, '

A(0103 Q) + 0(A(Q153: D)) = A(Q;0,)0(A(0,;2)°) + A(Q;0)o(A(Q;0,)°)  (4.4)

Example 4 In parametric families 8= {P,: 6 € H }, H c R*, the projection of Q (not in B) into B C®B,
say PO’ is determined by
| E,(1°(,8))=0

4.5)
Under suitable regulaﬁty condition, 0 is determined by
8-6=c(8,0)+0(AQ; B)") (4.6)
where " [ [ 000 o
¢(8,0):= [ [101 pd u] E[1°(.9)] “n

= A®)E,[1°¢.9)]

It follows that P 9 minimizes 8(Q,P ) for P, € Bupto a term of order o(6(Q, P)). Here § is any distance
function approximating A . It can be verified that the distance is minimized at t given by

Ct=0+ A(©)E,[kg 1°(,0)] (4.8)

This s theimprovement procedure form. Suitable estimators for T can be arrived at by substituting “nice”
estimators for 6, A(8) and E[K, K, 0)].

- 5. A Projection Approach in Semiparametric Models Admitting a
Sufficient Statistic

We now consider the case where the p-density of P admits the representation
p(-8) = h(,8)g(v(-,0)) G-D

Here we say that ¥(.,8)is sufficient for the family {g € T} where T'is endowed with some topology. From
the previous section the one-step improvement form is given by



T =0 +A®)Ey[ky 1 (,0)]
where P (x) s the estimator sequence for P,. Under appropriate regularity conditions, the above sequence

can be reduced to 0
v =0 +A®)E,_[1°(,0)] (5.2)

We now construct an appropriate estimator for T using P_and some estimator § for 6.

The factorization of p(.1,0) given above yields
h(.) (96) + W("e)g(.) ()

0. =
0 = 3)9 (5.3)
£°(9)
= H(-,8)+ 5(,0)&
(,0)+8(,0)=—"= 2.0)

where a dot on top indicates derivative with respect to 8. Given a sample of size n from p(.,0), we split
the sample and use the first K observations in constructing an estimator for .

Under appropnate regularity conditions (see Kumon and Amari, 1984), we can arrive at consistent
estimators for 0 using the estimating equations

3 H(X,0) =0 |
":‘ (5.4)
3 8(X,,6) =0

where K <n.

Using the rest of the sample, i.e. k+1,...,n we can use nonparametric techniques to construct
consistent estimators for the functionals A(6) and E, (p(.) (.,8)). The construction of estimators is done
by looking at the observations ¥, l( 9), ..,Y (.,6) where 0, later on, takes the value of the solution to
any one of the estimating equations given above This procedure will enable us to get consistent estimator

g, () for g( (.,0), the density of the sufficient statistic. Thus, we have an estimator for the improved
estimator sequence P1.
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